芝麻web文件管理V1.00
编辑当前文件:/home/krishnamexports/public_html/panel/excel/Classes/PHPExcel/Shared/trend/exponentialBestFitClass.php
getIntersect() * pow($this->getSlope(),($xValue - $this->_Xoffset)); } // function getValueOfYForX() /** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value **/ public function getValueOfXForY($yValue) { return log(($yValue + $this->_Yoffset) / $this->getIntersect()) / log($this->getSlope()); } // function getValueOfXForY() /** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getEquation($dp=0) { $slope = $this->getSlope($dp); $intersect = $this->getIntersect($dp); return 'Y = '.$intersect.' * '.$slope.'^X'; } // function getEquation() /** * Return the Slope of the line * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getSlope($dp=0) { if ($dp != 0) { return round(exp($this->_slope),$dp); } return exp($this->_slope); } // function getSlope() /** * Return the Value of X where it intersects Y = 0 * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getIntersect($dp=0) { if ($dp != 0) { return round(exp($this->_intersect),$dp); } return exp($this->_intersect); } // function getIntersect() /** * Execute the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ private function _exponential_regression($yValues, $xValues, $const) { foreach($yValues as &$value) { if ($value < 0.0) { $value = 0 - log(abs($value)); } elseif ($value > 0.0) { $value = log($value); } } unset($value); $this->_leastSquareFit($yValues, $xValues, $const); } // function _exponential_regression() /** * Define the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ function __construct($yValues, $xValues=array(), $const=True) { if (parent::__construct($yValues, $xValues) !== False) { $this->_exponential_regression($yValues, $xValues, $const); } } // function __construct() } // class exponentialBestFit